US 2004/0268361 Al

OPERATING SYSTEM ABSTRACTION AND
PROTECTION LAYER

[0001] This application is a continuation of U.S. patent
application Ser. No. 09/859209, filed on May 16, 2001,
entitled Operating System Abstraction and Protection Layer,
the entirety of which is incorporated herein by reference as
if fully set forth.

[0002] The present invention relates to computer software,
and more particularly to operating system software.

BACKGROUND OF THE INVENTION

[0003] In many environments, but particularly in environ-
ments where an application is delivered via a network, the
most important feature is an ability to run applications on the
fly, without a complex installation. Typically, in certain prior
art systems, great pains were taken to modify a client system
to appear as if a program was installed, or to actually install
the software itself, and then back out these modifications to
restore the original configuration. In doing this, multiple
problems present themselves: conflicts between an applica-
tion and the computer’s current configuration, multiple
instances of the same or different applications, complexity of
the back out process requires an application to be put
through a rigorous process to ensure all of its modifications
can be accounted for, and the use of shared files and system
components by multiple applications complicates back out
and the installation process.

SUMMARY OF THE INVENTION

[0004] The present invention provides a system for creat-
ing an application software environment without changing
an operating system of a client computer, the system com-
prising an operating system abstraction and protection layer,
wherein said abstraction and protection layer is interposed
between a running software application and said operating
system, whereby a virtual environment in which an appli-
cation may run is provided and application level interactions
are substantially removed. Preferably, any changes directly
to the operating system are selectively made within the
context of the running application and the abstraction and
protection layer dynamically changes the virtual environ-
ment according to administrative settings. Additionally, in
certain embodiments, the system continually monitors the
use of shared system resources and acts as a service to apply
and remove changes to system components.

[0005] Thus, for example, in embodiments within Win-
dows-based operating systems, and wherein all operations to
the Windows Registry are through the Win32 API, the
system preferably provides a means for hooking functions,
whereby each time said functions are invoked another
function or application intercepts the call, and the system
most preferably hooks each appropriate API function to
service a request whether made by an application run from
a server or if made by an application against a configuration
key being actively managed.

[0006] In other preferred embodiments of the present
invention, additional functionality is provided, such as those
embodiments wherein the operating system abstraction and
protection layer manages the integration of multiple
instances of an application by recognizing how many
instances of an application are running, and in such embodi-

Dec. 30, 2004

ments most preferably it also avoids making changes on
startup and shutdown unless there is only one application
instance running. In this embodiment it is also possible to
support multi-user operating systems in which multiple
instances of an application can be running on behalf of
different users.

[0007] Thus, the operating system abstraction and protec-
tion layer presents an environment to an application that
appears to be an installation environment without perform-
ing an installation, whereby a “pseudo installation” is cre-
ated in which all of the settings are brought into a virtual
environment at the time the application runs. Or in the case
of an installed application, acts to dynamically modify the
behavior of the application at run-time. Preferred embodi-
ments provide a means for preventing information on the
client computer from interfering or modifying the behavior
of an application, and most preferably provide a means for
dynamically changing the virtual environment according to
administrative settings. As mentioned above, in certain
embodiments it will be possible to have more than one
instance of a single software application running on the
same client computer, even if it was not originally authored
to do so. In such embodiments, shared, controlled contexts
are provided in which at least two of said instances of a
single application share one or more virtual settings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008]

[0009] FIG. 1 is a block diagram schematic showing the
relative relationship of the present invention, an operating
system and a software application;

[0010] FIG. 2 is a block diagram schematic showing two
applications running with private contexts and services;

[0011] FIG. 3 is a block diagram schematic showing two
applications running while the operating system provides
shared view of the system resources; and

In the drawing,

[0012] FIG. 4 is a block diagram schematic showing an
operating system guard and subsystems.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0013] Referring now to FIG. 1, there is illustrated a block
diagram schematic showing the relative relationship of the
present invention, an operating system and a software appli-
cation. Preferred embodiments of the present invention
provide an operating system abstraction and protection layer
100 denominated an “Operating System Guard.” Internally,
many operating systems 10 provide fault domains to protect
applications 50 from affecting each other when run. How-
ever, shared system resources and many other operating
system features allow this protection domain to be compro-
mised. An operating system abstraction and protection layer
100 will provide an additional, programmatically controlled
barrier between applications 50 to remove most application
level interactions. Disposed between the application 50 and
operating system 10 the operating system abstraction and
protection layer 100 selectively allows changes directly to
the operating system 10, versus containing the change
within the context of the running application. For one
example, in Windows-based systems, all operations to the
Windows Registry are typically done through the Win32



